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Abstract

This article predicts the relative performance of hedge fund investment styles one

period ahead using time-varying conditional stochastic dominance tests. These tests

allow the construction of dynamic trading strategies based on nonparametric density

forecasts of hedge fund returns. During the recent �nancial turmoil, our tests predict

a superior performance of the Global Macro investment style compared to the other

�Directional Traders�strategies. The Dedicated Short Bias investment style is, on the

other hand, stochastically dominated by the other directional styles. These results are

con�rmed by simple nonparametric tests constructed from the realized excess returns.

Further, by exploiting a cross-validation method for optimal bandwidth parameter se-

lection, we �nd out which factors have predictive power for the density of hedge fund

returns. We observe that di¤erent factors have forecasting power for di¤erent regions

of the returns distribution and, more importantly, Fung and Hsieh factors have power

not only for describing the risk premium but also, if appropriately exploited, for density

forecasting.
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1 Introduction

Hedge funds have attracted a great deal of attention during the last �fteen years. These �-

nancial instruments are private investment vehicles for wealthy individuals and institutional

investors that are less strictly regulated and supervised. Following unconventional trading

strategies, these funds have traditionally outperformed other investment strategies partly

due to the weak correlation of their returns with those of other �nancial securities. This sty-

lized fact has recently been disputed: the 2007-08 crisis has revealed the interdependencies

of these funds with the rest of the �nancial industry.

The sequence of papers by Fung and Hsieh (1997, 2001, 2002, 2004, 2011) showed that

the risk premium from these funds can be largely explained by a set of �nancial variables

rather di¤erent from the standard capital asset pricing formulations widely used in the

mutual fund investment literature. These �ndings are crucial for constructing optimal

portfolios. Agarwal and Naik (2004) study the relative performance between hedge funds

and also against mutual funds. Related articles include Capocci and Hübner (2004) and

Eling and Faust (2010). Patton (2009) also contributed to the study of these investment

vehicles by questioning their market neutrality.

Financial return predictability has a long tradition in the empirical �nance literature,

see Keim and Stambaugh (1986). Return predictability in the hedge fund industry has

been investigated by Amenc et al. (2003) and Hamza et al. (2006) and, more recently,

by Wegener et al. (2010), Avramov et al. (2011), Bali et al. (2011) and Vrontos (2012),

among others. In particular, Wegener et al. (2010) take non-normality, heteroskedasticity

and time-varying risk exposures into account to predict the conditional mean of the excess

returns on four hedge fund strategies. With the same aim, Bali et al. (2011) exploit hedge

fund exposure to various �nancial and macroeconomic risk factors. Avramov et al. (2011)

�nd that macroeconomic variables, speci�cally the default spread and the Chicago Board

Options Exchange volatility index (VIX), substantially improve the predictive ability of the

benchmark linear pricing models used in the hedge fund industry. All these seminal papers
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are concerned with forecasting the expected excess returns but hardly pay any attention to

higher moments of the conditional distribution that are relevant for investment decisions.

Interest in density forecasting has recently increased in the empirical �nance literature,

see Cenesiglou and Timmerman (2008) and Geweke and Amisano (2010), amongst others.

In this line, Vrontos (2012) speci�es a multivariate GARCH model for the conditional

distribution of hedge fund returns.

E¢ cient investment portfolios are usually the result of an optimization problem subject

to some constraints. Optimal portfolios are those that are on the mean-risk e¢ cient frontier

or are de�ned by the combination of risky and riskless assets that maximize a certain ex-

pected utility function representing investors�preferences. A powerful statistical method to

compare the relative e¢ ciency of investment portfolios is stochastic dominance tests. Fish-

burn (1977) shows that portfolios that are mean-risk e¢ cient are also stochastically e¢ cient

and, hence, a portfolio that stochastically dominates another portfolio is also a better strat-

egy in the mean-risk space. Similarly, this author shows that stochastic dominance implies

an ordering of portfolios in terms of investors� expected utility maximization for general

forms of the utility function and risk-aversion levels. This methodology has been recently

used for comparing investment portfolios. In a seminal paper, Linton et al. (2005) compare

the performance of di¤erent worldwide �nancial indexes. In a similar context, Wong et al.

(2008) propose this methodology as an appropriate technique for ranking the performance

of Asian hedge funds. These authors also study traditional mean-variance and CAPM ap-

proaches for analyzing the performance of these investment instruments and conclude that

the nonstandard empirical features of the returns on hedge funds, such as non-normality

and option-like behavior, make these techniques inappropriate for assessing their relative

investment performance.

Recent papers investigating investor behavior report evidence of the importance of in-

vestment styles. According to the style investing hypothesis (Barberis and Shleifer, 2003),

investors categorize risky assets into styles and subsequently allocate money to those styles

depending on their relative performance. Hedge funds, like many other investment classes,
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are grouped into investment styles. Ter Horst and Salganik (2011) �nd that better perform-

ing and more popular styles are rewarded with higher in�ows in subsequent periods, so it

is important to be able to predict the performance of hedge fund investment styles.

The objective of this paper is to predict the relative performance one period ahead

of hedge fund investment styles. We do this by means of dynamic stochastic dominance

tests conditional on a time-varying information set. To forecast the conditional density

corresponding to each hedge fund investment style, we propose nonparametric kernel meth-

ods. The vector of optimal bandwidth parameters is obtained as the solution of the cross-

validation method introduced by Hall et al. (2004). This method automatically discards

factors with no predictive power to forecast the return on the hedge fund style and, hence,

provides very valuable information on the relevant set of predictive factors.

Our empirical application focuses on hedge fund investment styles that bet on �nancial

markets movements. These investment styles fall into the broader category of �Directional

Traders�, see Agarwal et al. (2009). Our sample period runs between 1994:01 and 2009:12,

covering the recent global �nancial crisis in which these investment vehicles were more

exposed to the ups and downs of �nancial markets than market-neutral strategies. In

particular, we study the Dedicated Short Bias (DSB) style, that exhibits exposure to short

positions, the Emerging Markets (EM) style, that focuses on investing in the securities of

companies from emerging or developing countries, the Global Macro (GM) style, where bets

are made on the direction of currency exchange rates or interest rates, and the Managed

Futures (MF) style that exploits short-term patterns in futures markets. The predictive

performance of these styles is also compared to an asset-weighted portfolio, comprising the

whole hedge fund industry, that we call ALL. Our tests predict a superior performance of

the GM investment style compared to the other styles under study. The DSB investment

style is, on the other hand, stochastically dominated by the other directional styles. We also

�nd that, whereas the DSB, EM and MF styles do not dominate or are dominated by ALL

in the �rst order, indicating the relative e¢ ciency of these strategies, for the second and

third order, we observe that ALL stochastically dominates these directional styles. This can
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be interpreted as a preference of risk-averse investors for exposure to the whole hedge fund

industry over the directional styles. That is, this result suggests that, under risk aversion,

investors trade o¤ expected returns for lower risk in the form of more highly diversi�ed

portfolios. This �nding is reinforced by the test of stochastic dominance of third order as

it shows that ALL and GM are equally attractive for risk-averse investors with increasing

levels of risk aversion. These results are con�rmed by simple nonparametric proportion

tests on the di¤erence of the observed realized excess returns.

The present study is also related to Li and Kazemi (2007), who estimated conditional

density functions for hedge fund indices, and Meligkotsidou et al. (2009), who analyzed

hedge fund investment styles using quantile regression methods. Our work is also connected

with Billio et al. (2009), who studied hedge fund returns using nonparametric methods,

and Giannikis and Vrontos (2011), who dealt with the non-linear relationship between

hedge fund returns and risk factors using Bayesian model selection techniques and threshold

models. Finally, we join Wong et al. (2008) and Li and Linton (2010) in applying stochastic

dominance techniques to study the performance of hedge fund portfolios. Other articles

exploring stochastic dominance in related �elds1 are Abhyankar et al. (2008) who compare

value versus growth strategies, and Fong et al. (2005) who use stochastic dominance tests

to analyze the consistency of general asset-pricing models with the momentum e¤ect.

This article is structured as follows. Section 2 presents the nonparametric techniques

used to predict the conditional density of returns of the di¤erent hedge fund styles and

introduces the relevant dynamic tests of stochastic dominance between investment portfo-

lios. Section 3 discusses the data analyzed and the results from the empirical application

to the �Directional Traders�hedge fund styles. Section 4 concludes. Tables and Figures are

collected in an appendix.

1Levy (2006) and Sriboonchitta et al. (2010) provide interesting monographs on stochastic dominance
and its applications to �nance and risk management.
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2 Methodology

In this section, we �rst present the nonparametric kernel method to construct the predictive

conditional density function. Second, we discuss dynamic stochastic dominance tests of

arbitrary order.

2.1 A Nonparametric Estimator for the Predictive Conditional Density

Let (Yt)t2Z be a strictly stationary time series process de�ned on a compact set 
, with

an unconditional density function f(y) and a cumulative distribution function (cdf) F (y);

let ft�1(y) and Ft�1(y) be the corresponding predictive density and predictive distribution

functions conditional on the sigma-algebra =t�1 de�ned by all the information available up

to time t. Our interest is in forecasting these functions. To do this, we consider a k�vector of

predictive factors, denoted Xt, and a �nite information set It = f(Ys; Xs); t�m+1 � s � tg

de�ned on a compact set 
0 2 Rq, with q = (k + 1)m. With this set, we construct the

predictive density function fIt�1(y) that approximates ft�1(y). For completeness, we also

introduce the multivariate density function of It, denoted f It(y), and its distributional

counterpart, F It(y).

A natural nonparametric estimator of this conditional density for It�1 = x, with x being

a multivariate vector that represents a realization of the recent history of the information

set, and n the number of available observations, is

bfx(y) = n�1
nP
t=1
khY (y)Wh(It�1; x)bf I1(x) ; (1)

where Wh(It�1; x) =
q

�
s=1
h�1s w

�
It�1;s�xs

hs

�
, and w(�) and khY (�) are univariate kernel func-

tions for the marginal random variables of the vectors It�1 and Yt, respectively. The corre-

sponding bandwidth parameters are hs, 1 � s � q and hY . The nonparametric estimator

of f I1(x) is bf I1(x) = n�1
nP
t=1
Wh(It�1; x); It�1;s and xs denote the sth�component of the

multivariate random vectors It�1 and x, respectively. Li and Racine (2007) discuss the
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conditions for the uniform consistency of (1) to fx(y) for all (x; y) 2 
.

In both theoretical and practical settings, nonparametric kernel estimation has been

established as relatively insensitive to the choice of the kernel function. The same can-

not be said for bandwidth selection, even more so in our setting given by the search for

an appropriate information set It�1 to approximate ft�1(�). Following Hall et al. (2004),

we propose a (least squares) cross-validation method to determine the optimal vector of

bandwidth parameters. This method allows us to empirically determine It�1, that is, the

vector of conditioning variables that best predicts the density ft�1(y). The cross-validation

method automatically determines the irrelevant components of =t�1 through assigning large

smoothing parameters to them and, consequently, shrinking them toward the uniform dis-

tribution. The relevant components are precisely those that cross validation has chosen

to smooth in the traditional way by assigning them bandwidth parameters of conventional

size. A very nice review of the method and properties is given in Li and Racine (2007,

Section 5.3).

The choice of the appropriate conditioning information set is very important so as to be

able to optimally predict the density of returns and to implement the stochastic dominance

tests. Note that one also needs to determine the forecasting scheme: �xed, rolling or

recursive. To compare the predictive ability between density forecast competitors, we apply

the test developed in Amisano and Giacomini (2007). This method assumes no knowledge of

the true predictive density function and simply compares weighted versions of the predictive

log-likelihood function of pairwise density forecast competitors over an out-of-sample period.

Let f̂x(�) and ĝx(�) be two competing forecasts of ft�1(y) at time t� 1. The hypotheses

of the relative predictive ability test are the following;

H0 : E[WLRR;t+1] = 0; t = 1; 2; : : : ; T against, (2)

HA : E[WLRR;P ] 6= 0 for all P su¢ ciently large, (3)

with WLRR;t+1 = !(Y stt+1)(log f̂x(Yt+1)� log ĝx(Yt+1)) and WLRR;P = P�1
T�1P
t=R

WLRR;t+1;
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Y stt+1 = (Yt+1� �̂R;t)=�̂R;t is the realization of the variable at time t+1, standardized using

estimates of the unconditional mean and standard deviation of Yt+1, �̂R;t; �̂R;t, computed

on the same sample on which the density forecasts are estimated. R corresponds to the

in-sample period and P = T �R to the out-of-sample period. The weight function !(Y stt+1)

can be arbitrarily chosen by the forecaster to select the desired region of the distribution

of Yt+1. The only requirement imposed on the weight function is that it be positive and

bounded. Amisano and Giacomini (2007) propose di¤erent alternatives for the centre and

the tails of the distribution of the random variable, which will be used in our empirical

application.

The relevant test statistic for testing H0 is

tR;P =
WLRR;P

�̂P =
p
P
; (4)

where �̂2P is a heteroskedastic and autocorrelation consistent (HAC) estimator of the a-

symptotic long-run variance �2P = V (
p
P WLRR;P ). At a signi�cance level �; this test

rejects the null hypothesis of equal performance of forecasts whenever jtR;P j > z�=2, where

z�=2 is the (1 � �=2) quantile of a standard normal distribution. In the case of rejection,

we would choose fx(�) if tR;P is positive and gx(�), otherwise.

We should highlight that this method and more recent improvements (Diks et al., 2011;

Gneiting and Ranjan, 2011) do not allow us to determine the correct predictive speci�cation

of the model but they do permit us to discriminate between potential forecasting methods.

We will use these tests to choose between the �xed and rolling forecasting schemes in an

out-of-sample evaluation. The de�nition of It precludes the recursive forecasting scheme

in our predictive exercise. Amisano and Giacomini (2007) also discard this method when

implementing their predictive ability test for similar reasons.
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2.2 Dynamic Stochastic Dominance Tests

Stochastic dominance provides a powerful methodology to compare investment styles. First

order stochastic dominance compares the distribution function of returns; the second order

compares the expected value of the distributions, and so on. An interesting interpretation of

these measures is in terms of expected utilities for di¤erent degrees of investors�risk aversion.

First order stochastic dominance implies the superiority of an investment strategy for risk-

neutral investors. Second order implies the superiority of a strategy for risk-averse investors,

that is, investors with preferences that can be modeled by non-decreasing and concave real-

valued utility functions. Similarly, third order stochastic dominance implies the superiority

of one strategy over another for investors with increasing levels of risk aversion.2 Seminal

contributions to the topic are Stone (1973), Porter (1974) and Fishburn (1977).

From a methodological point of view, Davidson and Duclos (2000) is one of the �rst

articles to introduce tests of stochastic dominance of di¤erent orders. These authors, how-

ever, do not check the dominance of one distribution function over another for every point

of the domain of the corresponding random variables but only for a discrete set of points

of these distributions. In this sense, the test may be inconsistent if the stochastic domi-

nance condition is not satis�ed for the points not considered in the analysis. On the other

hand, the asymptotic theory of the test is standard. Barrett and Donald (2003) extend this

test to the entire domain of continuous random variables and use simulation and bootstrap

methods to approximate the asymptotic distribution of the test. These authors devised

this test to compare income distributions, so it does not make allowance for dependence

between the random variables but, even more importantly, it is not valid under serial depen-

dence across time. Linton et al. (2005) incorporate the presence of serial dependence and

cross-dependencies between the random variables. The asymptotic theory of the test pro-

posed by these authors is very cumbersome and relies on subsampling techniques. This test

2The preferences of investors with increasing levels of risk aversion are characterized by a utility function,
u(x), with x denoting wealth, that is non-decreasing, concave and such that �du=dx is concave. It can
be shown that investors with a utility function of this type have a preference for a positive skewness of
the distribution of wealth. In this line, Harvey and Sidique (2000) show the importance of incorporating
skewness preferences into asset pricing models.
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compares the existence of stochastic dominance between residuals of parametric time series

regression models and, hence, it may be �awed if the parametric regression model proposed

to describe the relationship between the response variable and the regressors is inadequate.

Scaillet and Topaloglou (2010) also extend Barrett and Donald (2003) and accommodate

the presence of serial dependence in unconditional stochastic dominance tests of arbitrary

order. Other seminal articles in this literature are Klecan et al. (1991), Anderson (1996)

and, more recently, Linton et al. (2010).

Following Linton et al. (2005), we focus on a dynamic setting, characterized by a

time-varying information set, and propose a conditional stochastic dominance test that

builds on the recent contribution of Gonzalo and Olmo (2011). Our approach is genuinely

nonparametric and, therefore, is not a¤ected by misspeci�cation issues. It relies on the

nonparametric forecasts of the density functions discussed above. Our testing framework

allows for cross-dependence between the returns on the styles and, more importantly, for

serial dependence over time. The asymptotic distribution of the tests can be approximated

by bootstrap and simple simulation methods. In what follows, we describe our tests for

conditional stochastic dominance of arbitrary orders in a dynamic setting.

Let A and B denote two investment portfolios; A stochastically dominates B for order


 conditional on the dynamic information set It�1 if, and only if,

	AIt�1;
(y) � 	
B
It�1;
(y) for all y 2 
 and t 2 Z (5)

with 	It�1;
(y) =
R y
�1	It�1;
�1(�)d� and where 	It�1;1(y) = FIt�1(y). The integration by

parts of these quantities yields the following characterization of the stochastic dominance

condition:

Z y

�1
(y � �)
�1fAIt�1(�)d� �

Z y

�1
(y � �)
�1fBIt�1(�)d� for all y 2 
 � R and t 2 Z: (6)

We are interested in predicting the dynamics of the stochastic dominance relationship

between investment styles, that is, our aim is to assess this condition for each period t.
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This implies that the conditioning information set It�1 for each t is simply a vector x

describing the realization of the variable It�1. In this case, the characterization of stochastic

dominance conditional on It�1 = x is 	Ax;
(y) � 	Bx;
(y) for all y 2 
 and x �xed, with

	x;
(y) =
R y
�1	x;
�1(�)d� and 	x;1(y) = PfYt � y j It�1 = xg. The relevant test for

predictive stochastic dominance of arbitrary order 
 � 1 at time t can be expressed, after

some algebra, as the following composite hypothesis:

H0;
 : E[dt;
(y) j It�1 = x] � 0 for all y 2 
 and x �xed, (7)

against

H1;
 : E[dt;
(y) j It�1 = x] > 0 for some y 2 
, (8)

with dt;
(y) = (y � Y At )
�11(Y At � y)� (y � Y Bt )
�11(Y Bt � y).

We follow the extant literature on stochastic dominance tests and obtain the critical

values of the test using the least favorable case3, de�ned by the equality in (7) for all y 2 
;

that we denote as eH0;
 . To test for H0;
 , we propose the supremum of the following process
on y 2 
,

bD
(y) = n�1
nP
t=1
dt;
(y)Wh(It�1; x)bf I1(x) : (9)

For 
 = 1, this expression is the di¤erence between the nonparametric kernel estimators of

the predictive distribution functions for the returns on portfolio A and B, see Li and Racine

(2007, p. 182). For 
 > 1, it compares higher moments of the conditional distribution of

both portfolios.

A suitable test statistic for this test is Tn;
 = (nh1 � � �hq)1=2 sup
y2


bD
(y), that converges
in distribution under eH0;
 to the supremum of a Gaussian process with zero mean and

a covariance function that depends on the vector x. The proof of this result for a more

general setting de�ned by x varying over the compact set 
0 can be found in Gonzalo and

3This technique is standard for composite null hypotheses, that is, those involving an in�nite number of
conditions, see Barrett and Donald (2003) and Gonzalo and Olmo (2011) in a stochastic dominance context,
and Romano and Wolf (2011) for stochastic monotonicity testing.
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Olmo (2011). It is well known in the stochastic dominance literature that the asymptotic

distribution of these tests cannot be tabulated. Nevertheless, resampling and simulation

methods can be implemented to approximate their asymptotic p-values. The following

algorithm describes this procedure for It�1 = x; with x �xed.

Algorithm:

1. Construct a grid of m points y1; :::; ym contained in the compact space 
 and execute

the following steps for j = 1; : : : ; J .

2. Generate fvtgnt=1 independently and identically distributed (iid) N(0; 1) random vari-

ables.

3. Let dt;
(yi) = (yi � yAt )
�11(yAt � yi) � (yi � yBt )
�11(yBt � yi), with yAt ; y
B
t being

realizations of the random variables Y At and Y Bt .

4. Set bD�
(yi) = n�1
nP
t=1

dt;
(yi)Wh(It�1;x)vtbfI(x) , with x being a realization4 of It�1 and h =

(h1; :::; hq) obtained with a cross-validation criterion.

5. Compute T �(j)n;
 = (nh1 : : : hq)
1=2 sup

yi2

bD�
(yi) for all yi 2 
.

This algorithm yields a random sample of J observations from the distribution of the

test statistic Tn;
 . The simulated p-value of the stochastic dominance test for a given order


 is

bp�n;
 = 1

J

JX
j=1

1(T �(j)n;
 > Tn;
) (10)

which, under standard regularity conditions, see Hansen (1996) and Gonzalo and Olmo

(2011), converges in probability to the true asymptotic p-value of eH0;
 as J; n!1.

By repeating the test for each t we can establish a time-varying ranking of portfolios that

allows us to construct dynamic trading strategies based on conditional stochastic e¢ ciency.

4For simplicity in the exposition, we hereafter consider that It�1 = IAt�1
S
IBt�1 refers to the set that

collects the information contained in IAt�1 and I
B
t�1, with each of the latter sets containing the information

relevant for forecasting fAt�1 and f
B
t�1, respectively.
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This idea can be extended to analyze portfolio stochastic dominance/e¢ ciency between

more than two portfolios by using the test statistics proposed in Barrett and Donald (2003)

and Linton et al. (2005). For illustrative purposes, we focus on pairwise comparisons in the

next section.

3 Empirical Application

This section is divided into three blocks. The �rst part discusses the dataset given by the

excess returns on the indices of the hedge fund styles above mentioned and the risk factors

proposed by Fung and Hsieh (2001, 2004). The second block derives, both in a descriptive

and a predictive setting, the optimal set of factors for each style. The �nal block of this

section builds on this analysis to forecast the relative performance of hedge fund styles.

3.1 Data description

The hedge fund returns analyzed have been calculated from the Credit Suisse/Tremont

asset-weighted indices expressed in US Dollars.5 Data are monthly and span the period

1994:01-2009:12. The investment styles considered are Dedicated Short Bias (DSB), Emerg-

ing Markets (EM), Global Macro (GM) and Managed Futures (MF). For completeness, we

also study an asset-weighted portfolio comprising the whole hedge fund industry (ALL). In

what follows, we will refer to the returns in excess over the risk-free asset (3-month Treasury

Bill). For simplicity in the implementation of stochastic dominance tests, the returns are

de�ned as the di¤erences between the logarithm prices and not in percentage terms. Some

descriptive statistics are reported in Table 1.

[Insert Table 1 about here]

5The reader should note that these indices are not investable. The intention of this empirical section is
to compare the predictive performance of investment styles in the spirit of Barberis and Schleifer (2003).
For this reason, we are more interested in the representativeness of the indices than in the possibility of
their being investment vehicles. Another reason for using these styles instead of investable indices is data
availability. The Credit Suisse/Tremont (Blue Chip) database on these portfolios begins in August 2003.
Nevertheless, Heidorn et al. (2010) report a correlation coe¢ cient around 0.95 for the non-investable and
investable indices elaborated by this data provider.

13



On average, only GM obtains higher excess returns than ALL. The case of DSB, which

obtains a negative mean return over the whole sample, is particularly noteworthy. This style

obtains, however, the highest maximum return, while EM obtains the lowest minimum one.

In terms of skewness, EM, GM and ALL display negative values, more pronounced for

EM. The positive skewness of DSB reveals the existence of very large positive returns. In

addition, all hedge fund returns have excess kurtosis with the exception of MF, for which

the Jarque-Bera test is not able to reject the null hypothesis of normality.6 In general, these

results con�rm the non-normality of hedge fund returns reported in the related literature

(see Wong et al., 2008; among others). Also in line with previously established evidence, the

autocorrelation coe¢ cients and the Ljung-Box statistic p-values suggest that the returns

for DSB, GM and MF are serially correlated.

The set of explanatory factors for describing the hedge fund excess returns consists of the

seven-factor model of Fung and Hsieh (2004), which has been shown to achieve considerable

explanatory power, plus an eighth factor recently proposed by these authors (Fung and

Hsieh, 2001) and given by the MSCI Emerging Market index monthly total excess return

(MSCIEM). The seven-factor model includes three trend-following risk factors that are the

excess returns on portfolios of lookback straddle options on bonds (BTF), currencies (CTF)

and commodities (CMTF), constructed to replicate the maximum possible return on trend-

following strategies in their respective underlying assets.7 The two equity-oriented risk

factors are the excess monthly total return of the S&P 500 index (EqMkt) and the Russell

2000 index monthly total return minus the S&P 500 monthly total return (SizeSpr). Two

bond-oriented factors are the monthly change in the 10-year Treasury constant maturity

yield (BMkt) and the monthly change in the Moody�s Baa yield minus the 10-year Treasury

constant maturity yield (CrdSpr). The corresponding descriptive statistics for these factors

6This �nding is consistent with empirical studies using the same data (Frydenberg et al., 2008; Switze
and Omelchak, 2009). An explanation of this �nding may be that the index is asset-weighted and, hence,
gives more weight to those funds with large capitalization. The normality of Managed Futures for this
period suggests that these large-cap funds exhibit normally distributed returns. To con�rm this, we have
also constructed the equally-weighted counterpart portfolio of the Managed Futures style and obtained the
same highly non-normal behavior observed for the other styles in the Credit Suisse/Tremont database.

7Downloadable from http://faculty.fuqua.duke.edu/~dah7/HFRFData.htm.
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are shown in Table 2.

[Insert Table 2 about here]

The Jarque-Bera test shows the non-normality of the risk factors. EqMkt, CrdSpr

and MSCIEM display negative skewness and all risk factors have excess kurtosis; SizeSpr,

CrdSpr and MSCIEM are serially correlated.

3.2 Optimal Descriptive and Predictive Risk Factors

Hall et al. (2004) show that their cross-validation bandwidth selection method not only

assigns optimal weights to the di¤erent relevant factors for estimating a conditional density,

but also automatically determines the factors that are irrelevant. Our interest in this

nonparametric estimation procedure is twofold. First, from a descriptive perspective, we

use this method to determine the risk factors with power to explain the excess returns

observed in hedge funds; and second, from a forecasting perspective, we need to know

the set of relevant factors for predicting the conditional density of hedge fund returns. In

contrast to the standard linear pricing models popularized by Fung and Hsieh and other

authors and to nonlinear re�nements, we are interested in �nding out which factors have

power not only for describing (and predicting) the expected excess return but its complete

density.

We consider three di¤erent speci�cations of the excess return both from a descriptive

and a predictive point of view. For the former approach, the returns on the hedge fund

are regressed on a set of factors measured on the same date and, for the latter, the set of

factors is considered one period lagged. We use a simple linear regression model estimated

by ordinary least squares (OLS), a quantile regression model for the 25th, 50th and 75th

quantiles (QR25, QR50 and QR75, respectively), and the nonparametric conditional density

estimation methods (NP). Our analysis covers 1994:01-2006:12, which will be considered

later as the in-sample estimation period. The results of the descriptive approach are reported

in Table 3.
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[Insert Table 3 about here]

For the parametric methods, the risk factors are those variables that are found to be

statistically signi�cant at the 5% level; for the nonparametric alternative, the relevant

factors are those for which the cross-validation bandwidth selection rule assigns a value

lower than one. Our �ndings can be summarized as follows. First, the set of signi�cant

risk factors depends on the investment style. The Fung-Hsieh linear pricing model reveals

that the equity-oriented risk factors are su¢ cient to explain the risk premium of the DSB

style. For the EM style, the relevant risk factor is the emerging market index (MSCIEM)

and the pricing model resembles a standard CAPM. Second, for a given style and with

the exception of DSB, the relevant risk factors depend on the statistical measure under

scrutiny. For example, the number of relevant factors for the EM style decreases as we move

towards the upper region of the distribution. It is also interesting to observe that, for this

style, the equity-oriented factors lose explanatory power beyond the lower tail of the return

distribution. The asset-weighted portfolio comprising the whole hedge fund industry (ALL)

is explained by the largest number of factors across di¤erent statistical measures. Third, the

analysis of the whole conditional distribution through the nonparametric approach considers

the largest set of explanatory factors. For example, seven of the eight potential factors are

considered for explaining the conditional density of the GM style returns. Finally, and

unsurprisingly, the nonparametric method achieves the highest log-likelihood values.

The above results dramatically change in the predictive framework. Following Wegener

et al. (2010), we also include the lagged hedge fund excess return as a potential predictive

factor. Results are reported in Table 4. The standard linear pricing model lacks any

predictive power for the DSB style. In addition, except for the GM style, the risk factors

are very poor at predicting the quantiles of the hedge fund returns distribution. More

speci�cally, for MF and ALL, bond and equity-related factors have some predictive power

for certain quantiles of the distribution; for DSB and EM, however, the predictive ability of

the factors is null. Analogous to the descriptive approach, the nonparametric method makes
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use of the largest number of risk factors for constructing the conditional predictive density.

Interestingly, these factors are very similar to those of the descriptive exercise previously

discussed. This exercise reveals the importance of obtaining nonparametric estimates of the

conditional predictive density of returns. In contrast to standard linear pricing formulations,

we have found that the Fung-Hsieh risk factors also have predictive power when properly

exploited.

[Insert Table 4 about here]

To assess the persistence of these factors, we compare the forecasting ability of the rolling

and �xed forecasting schemes. Whereas, in the former scheme, the bandwidth parameters

are recomputed for each rolling window, in the �xed scheme, the bandwidth parameter vec-

tor for estimating the conditional predictive density remains constant since it is computed

only once. The evolution in the dynamics of the optimal bandwidth parameters obtained

through the rolling scheme provide very valuable information on the ability of the factors

to predict the conditional density over the out-of-sample period. If the optimal bandwidth

parameter corresponding to a potential predictive factor is stable over the out-of-sample

evaluation period and takes values of conventional size, there is evidence of the persistence

of this factor for predicting the conditional density of returns. On the other hand, an erratic

behavior in the dynamics of the optimal bandwidth parameter is evidence of abrupt changes

in the predictive ability of the factor. We apply the predictive ability test developed by

Amisano and Giacomini (2007) to the density forecast obtained from (1) using a �xed fore-

casting scheme (the bandwidth parameters are obtained from the period 1994:01-2006:12)

and a rolling forecasting scheme in which the bandwidth parameters are re-estimated for

each one-month-ahead rolling window. The results of the test in Table 5 re�ect a strong

persistence in the predictive ability of the factors revealed in Table 4. We observe no sig-

ni�cant statistical di¤erences in predictive ability between the �xed and rolling approaches.

The Amisano and Giacomini test only �nds statistical evidence of a superior predictive
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ability of the �xed approach for the DSB style when focused on predicting the center of the

conditional return distribution. Figure 1 depicts the dynamics of the optimal bandwidth

parameters for DSB and the factors BTF, EqMkt, BMkt and MSCIEM. The dynamics of

these parameters are reasonably stable over the rolling out-of-sample evaluation period and

give support to the results of the predictive ability test.

[Insert Table 5 and Figure 1 about here]

For completeness, Table 6 reports the set of �xed optimal bandwidth parameters corres-

ponding to each potential predictive factor obtained for the in-sample period. The results

highlight the di¤erences between styles and factors. The only factor with power for all styles

is BTF; SizeSpr and MSCIEM also have an important weight across styles. Nevertheless,

the lagged return and the other Fung-Hsieh risk factors are relevant for the conditional

density of three out of �ve of the styles considered.

[Insert Table 6 about here]

3.3 Forecasting the Performance of Hedge Fund Styles

The aim of this study is to predict, one period ahead, the best investment strategy from

the set of hedge fund styles involved in directional trading. The null hypothesis of interest

is H0;
 : E[dt;
(y) j It�1 = x] � 0 for all y 2 
 and x �xed for a given t. Critical values are

obtained under the least favorable case eH0;
 . The test is one-sided and has power against
the hypothesis E[dt;
(y) j It�1 = x] > 0. This test is implemented for all t in the out-

of-sample evaluation period using a rolling scheme to incorporate the information into the

test. Expression (9) is estimated using rolling windows of size R = 160. For the �rst out-of-

sample observation, we use the sample 1994:01-2006:12 to construct bD
(y) for y 2 
, and
simulate the p-value of the test. This exercise is repeated for 1994:02-2007:01 and so on to
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obtain a time series of 36 p-values over the period 2007:01-2009:12. The optimal bandwidth

parameter vector corresponding to It�1 is a �xed vector (h1;A; : : : ; hq;A; h1;B; : : : ; hq0;B) with

q + q0 being the number of factors relevant for at least one of the strategies. Following Li

and Racine (2007), we consider hi = n�1=(4+(q+q
0)), which is the optimal rate of convergence

for cross-validation bandwidth selection methods. Another option could be the bandwidth

estimates obtained from the nonparametric estimation of each conditional predictive density

(1) (see Table 6 for the bandwidths corresponding to the �xed forecasting scheme).

[Insert Figures 2 and 3 about here]

Figure 2 plots the dynamic p-values of stochastic dominance tests of order one for each

directional investment style against ALL. The dashed line re�ects the p-value of the test

whose null hypothesis is given by the stochastic dominance of ALL over the individual styles.

The solid line represents the p-value of the test de�ned by the converse null hypothesis, that

is, the individual style dominates ALL for order one. Similarly, Figure 3 plots the dynamic

p-values of the tests between all the possible pairwise combinations of directional investment

styles. For DSB vs. EM, for example, the dashed line corresponds to the p-value of the test

whose null hypothesis is given by the dominance of DSB over EM and the solid line reports

the p-values of the converse hypothesis.

The test for �rst order stochastic dominance provides mixed results; pairwise compar-

isons between ALL and each of the DSB, EM and MF styles reveal no stochastic ordering

between these portfolios. These styles are �rst order stochastically e¢ cient suggesting no

strict preference for one over another by risk-neutral investors. These investors should pre-

fer, however, GM over ALL after the third quarter of 2007. This is because, during this

period, the GM style strictly dominates the ALL style in the �rst order. The pairwise

comparison between the directional styles also reveals that DSB is dominated in the �rst

order by the other three investment styles during the crisis period; the test also predicts

that EM dominates MF. Nevertheless, the dominance of GM with respect to DSB and MF

vanishes at the end of the evaluation period.
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Investors can use this information to decide, at time t, where to invest at time t + 1.

To shed more light on investors�preferences with respect to these hedge fund portfolios,

we also consider higher orders of stochastic dominance re�ecting risk aversion. Figures 4

to 7 show the dynamics of the p-values for the tests of second and third order stochastic

dominance.

[Insert Figures 4 to 7 about here]

Fishburn (1977) shows that, if portfolio A dominates portfolio B in the �rst order, it

also dominates it for higher orders of stochastic dominance. Our empirical �ndings are

consistent with this theory. DSB is dominated by all the other styles; and ALL dominates

DSB, EM and MF. The second order of stochastic dominance also predicts the dominance

of GM over ALL; however, for the third order, it can be concluded that GM dominates

ALL and that ALL dominates GM. This �nding suggests that these portfolios are equally

attractive for increasing levels of risk aversion. In contrast, DSB is expected to be the

worst-performing style for investors concerned with the risk-return trade-o¤. The predicted

dominance of EM over MF vanishes for higher orders of stochastic dominance, and hence,

of risk aversion.

We also contemplate two further experiments as robustness checks. To see if this or-

dering of styles is robust to the choice and weighting schemes of the individual hedge funds

comprising the indices, we have also constructed equally-weighted portfolios from all indi-

vidual funds in each style, as reported in the Lipper TASS database.8 The portfolio ALL is

now constructed using an equally-weighted combination of all funds comprised in the Lipper

TASS database whose styles coincide with those analyzed with Credit Suisse/Tremont. Fig-

ures 8 to 13 show the p-values of the test for the same three orders of stochastic dominance.

8As of October 2010, this database comprised 12,018 hedge funds and funds of hedge funds, of which
4,577 were actively reporting information. The styles to which each fund is assigned are based on those
corresponding to the Credit Suisse/Tremont hedge fund indices. We have considered the monthly returns
for the period 1995:01-2009:12 of those funds that report their performance in US Dollars. The number of
individual funds that could be included in each portfolio di¤ers among styles (50 funds for DSB, 747 for
EM, 593 for GM and 2,095 for MF).
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Although the dynamics of the p-values are slightly di¤erent for these synthetic indices, the

results are comparable to those reported before. However, for the �rst order, ALL stochas-

tically dominates GM for most of the evaluation period. For stochastic dominance of second

and third orders, we observe that the GM style outperforms the other styles except ALL.

Finally, DSB is outperformed by the rest of styles.

[Insert Figures 8 to 13 about here]

The second robustness check consists of studying a period without the tensions pro-

duced by the �nancial markets crisis. With this aim, we repeat the analysis with data

prior to the crisis that began in 2007. The in-sample period covers 1994:01 to 2003:12

and the out-of-sample evaluation period is 2004:01-2006:12. The dynamic p-values for the

predictive stochastic dominance test for the three orders are those in Figures 14 to 19. The

main di¤erence with respect to the crisis period emerges from the analysis of stochastic

dominance between the pairs (ALL, GM) and (GM, EM). In this period, ALL and GM

are stochastically e¢ cient, in the sense that no portfolio dominates the other, not only for

stochastic dominance of �rst order but also for second order. It is only under increasing

levels of risk aversion that our test predicts that ALL and GM are equally attractive. The

opposite is observed for this period between GM and EM. In contrast to the crisis period,

GM stochastically dominates EM for the �rst order. The latter observation uncovers an

interesting result: the stochastic dominance tests predict that GM is a dominating strat-

egy compared to the other directional styles during tranquil periods. However, during the

crisis, this result is only observed for higher orders of stochastic dominance, that is, under

investors�risk aversion.9

9 It is worth noting that, for some pairwise comparisons, the dynamics of the p-values are similar to those
observed for the crisis period. This phenomenon is due to the fact that the quantity bD
 in (9) is constructed
using very similar samples for the crisis and noncrisis periods, hence the similarities obtained for those styles
for which there are no signi�cant changes in the returns dynamics between 2004 and 2006. The possibility
of using windows of the same length, diminishing the extent of overlapping between the samples used for
estimating bD
 for the crisis and noncrisis exercises, is not feasible since no data on all these directional hedge
fund styles is available before 1994.
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[Insert Figures 14 to 19 about here]

The results discussed so far are predictions of future performance and, hence, in order

to be accepted, they should be compared to ex-post performance. Following the related

literature, we propose simple nonparametric proportion tests to assess the di¤erence between

the excess returns realized over the out-of-sample period. Let rAt and rBt denote these

realized excess returns for two di¤erent investment strategies, A and B, and let zt = rAt �rBt .

We say that strategy A has been better than B for risk-neutral investors if pz = Pfzt >

0g > 0:5. Similarly, we say that strategy A is better than B for risk-averse investors if

epz = Pfezt > 0g > 0:5 with ezt = rAt =�A � rBt =�B, where �A and �B are the unconditional
standard deviations of the returns on A and B over the out-of-sample evaluation period.

These conditions can be tested as follows10:

H
(n)
0 : pz � 0:5 against H(n)

1 : pz > 0:5: (11)

To test this condition over an evaluation period of length P , we propose the sample version

of pz given by bpz = 1
P

PP
t=1
1(zt > 0). If zt is serially uncorrelated, it is well known that the test

statistic
p
P bpz�pzpbpz(1�bpz) converges, as P !1, to a standard normal distribution. Otherwise,

we need to correct for the existence of serial correlation between the sequence of indicator

functions. One possibility is to estimate the variance of bpz using serially dependent robust
estimators. These estimators provide a nice alternative for moderate sample sizes. For small

values of P; block bootstrap methods are more suitable to approximate the distribution of

the relevant test statistic de�ned now by SP =
p
P (bpz � pz).

These resampling methods are based on blocking arguments in which data are divided

into blocks that are resampled. The arti�cial time series obtained from this resampling

procedure are of the same size as the original sample and mimic the dependence structure

observed in the data. Let b; l denote integers such that P = bl, with b being the block

size. There are two di¤erent ways of implementing a block bootstrap depending on whether
10The test for epz is analogous and is omitted to save space.
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the blocks are overlapping or non-overlapping. The overlapping rule produces P � l + 1

blocks of consecutive observations. We focus on the non-overlapping method that yields

a sample of size P from l disjoint blocks B1; :::; Bl of size b, with Bj = (1(z1+(j�1)b >

0); : : : ; 1(zjb > 0)) and j = 1; : : : ; l. As in the iid bootstrap, the blocks can be repeated

when resampling randomly with replacement. The asymptotic distribution of the out-of-

sample test SP can be approximated by the empirical distribution of the test statistic

sequence SP;i =
p
P
�bp�z;i � bpz�, indexed by i = 1; :::;M , with M being the number of

Monte Carlo simulations, and bp�z;i the bootstrap counterpart of bpz constructed from the

simulated block bootstrap sample i. The empirical p-value of the test is obtained as

bpP;b = 1

M

MX
i=1

1(SP;i > SP ) (12)

[Insert Table 7 about here]

Table 7 reports the results of the test H(n)
0 for pz and epz equal to 0:5. Our choice of

block size is based on the optimal data-driven algorithm of Politis et al. (2009). It varies

across experiments with an average block size (b) of 2:223 and a standard deviation of

0:677. The number of Monte Carlo simulations is 2; 000. For both pz and epz, we observe
that the GM style slightly outperforms the other investment styles ex-post, the test being

statistically signi�cant at the 5% level against DSB and MF. In addition, the results for

ALL con�rm that this style has not dominated the other styles over the evaluation period

as our tests for 
 = 1 suggested. However, for 
 = 2, only the prediction for DSB is in line

with the empirical ex-post test. Finally, the �ndings for the DSB style reveal its ex-post

underperformance against the other strategies.

3.4 Interpretation of results

The interest of this analysis is not only to learn about the performance of �Directional

Traders�hedge funds but also because these directional styles bet on market movements
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and so their returns are often strongly correlated with the market.

The outperformance of GM and EM over DSB highlights the superiority of �return en-

hancer�strategies (Amenc et al., 2003) over �risk reducer�strategies. The expected increase

in overall volatility brought about by the former strategies is compensated by the higher

returns obtained. On the other hand, the potential bene�t of using DSB strategies concen-

trating on the short side and thereby sacri�cing market-neutrality drops sharply over the

crisis period. Hedge fund managers are not capable of properly forecasting how �rms are

a¤ected by the global economic downturn. Investment on potentially declining funds have

not lived up to expectations, indicating that the e¤ect of the crisis has been somewhat un-

predictable across �rms and economic sectors. There is also the possibility that unexpected

regulatory laws forbidding short selling in certain markets put forward to prevent a cascade

of short selling orders in some stocks have also prevented these hedge fund strategies from

fully capturing pro�t opportunities.

In contrast, the payo¤s of hedge funds specializing in tactical trading strategies that

attempt to pro�t by forecasting major macroeconomic events such as changes in interest

rates, currency movements and stock market performance as well as the exact timing of

these movements, have exceeded those of the other directional trading strategies. We have

observed that the return pro�le of macro funds is much more volatile than that of other

styles. Part of the reason is that macro funds often trade in instruments that are relatively

illiquid. In searching for investment opportunities, GM hedge fund managers take into

consideration a diverse set of factors such as geopolitical issues, economic indicators, market

trends and liquidity �ows. Our results suggest that hedge fund managers�expertise in these

issues and, more importantly, their knowledge of global markets, has paid o¤ more than

taking wrong bets on the performance of �rms trading in developed economies.
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4 Concluding remarks

The aim of this study is to predict, one period ahead, the best investment strategy from

a set of potential candidates. This is done by constructing a predictive test of stochastic

dominance of arbitrary order that is applied to directional hedge fund investment styles

during the recent global �nancial crisis. The empirical results provide a clear answer to the

question of which style to choose one period ahead.

Under risk neutrality, the test does not provide a clear ranking of portfolio performance

during the �nancial turmoil. It is under risk aversion when the Global Macro style is

observed to be superior to the other strategies under analysis, including an asset-weighted

portfolio comprising hedge funds from the whole industry. This �nding is a little surprising

given the diversi�cation properties of the latter. Nevertheless, for increasing levels of risk

aversion, we observe that the diversi�ed strategy is equally attractive to the Global Macro

style. These results are robust to the composition of the style portfolios. However, our

results suggest that the Global Macro style also dominates the other directional styles

under risk neutrality when a period previous to the crisis is analyzed.

A byproduct of our analysis has been the study of the optimal set of factors for describ-

ing as well as predicting the excess returns on hedge funds. The standard linear pricing

formulation for modelling the risk premium on the returns has been extended to analyze the

whole predictive density of returns. The cross-validation bandwidth selection method used

for estimating these conditional density functions nonparametrically has been instrumental

for determining which factors can predict the risk premium. For the linear pricing model,

the factors proposed by Fung and Hsieh to explain the risk premium barely have predictive

ability one period ahead. Interestingly, these factors are found to be highly signi�cant if we

consider the whole predictive density of returns. The nature of these factors depends on

the style under consideration.

25



References

[1] Abhyankar, A., K.-Y. Ho, and H. Zhao, 2008. Value versus growth: Stochastic domi-

nance criteria. Quantitative Finance 8, 693-704.

[2] Agarwal, V., N. Daniel and N. Naik, 2009. Role of Managerial Incentives and Discretion

in Hedge Fund Performance. Journal of Finance 64(5), 2221-2256.

[3] Agarwal, V. and N. Naik, 2004. Risks and portfolio decisions involving hedge funds.

Review of Financial Studies 17(1), 63-98.

[4] Amenc, N., S. El Bied and L. Martellini, 2003. Predictability in Hedge Fund Returns.

Financial Analysts Journal 59(5), 32-46.

[5] Amenc, N. and L. Martinelli, 2002. Portfolio optimization and hedge fund style allo-

cation decisions. Journal of Alternative Investments 5, 7-20.

[6] Amenc, N., L. Martinelli and M. Vaissié, 2003. Bene�ts and Risks of Alternative In-

vestment Strategies. Journal of Asset Management 4, 96�118.

[7] Amisano, G. and R. Giacomini, 2007. Comparing Density Forecasts via Weighted Like-

lihood Ratio Tests. Journal of Business and Economic Statistics 25(2), 177-190.

[8] Anderson, G, 1996. Nonparametric Tests of Stochastic Dominance in Income Distrib-

utions. Econometrica 64, 1183-1193.

[9] Avramov, D., R. Kosowski, N. Naik and M. Teo, 2011. Hedge funds, managerial skill,

and macroeconomic variables. Journal of Financial Economics 99, 672-692.

[10] Bali, T., S. Brown and M. Caglayan, 2011. Do Hedge Funds�Exposures to Risk Factors

Predict Their Future Returns? Journal of Financial Economics 101, 36-68.

[11] Barberis, N. and A. Shleifer, 2003. Style Investing. Journal of Financial Economics 68,

161-199.

26



[12] Barrett, G. and S. Donald, 2003. Consistent tests for stochastic dominance. Economet-

rica 71, 71-104.

[13] Billio, M., M. Getmansky and L. Pelizzon, 2009. Nonparametric Analysis of Hedge

Fund Returns: New Insights from High Frequency Data. Journal of Alternative Invest-

ments 12(1), 21-38.

[14] Cappoci, D. and G. Hübner, 2004. Analysis of hedge fund performance. Journal of

Empirical Finance 11, 55-89.

[15] Cenesizoglu, T. and A. G. Timmermann, 2008. Is the Distribution of Stock Returns

Predictable? Available at SSRN: http://ssrn.com/abstract=1107185.

[16] Davidson, R. and J. Duclos, 2000. Statistical inference for stochastic dominance and

for the measurement of povery and inequality. Econometrica 68, 1435-1464.

[17] Diks, C., V. Panchenko and D. van Dijk, 2011. Likelihood-based scoring rules for

comparing density forecasts in tails. Journal of Econometrics 163(2), 215-230.

[18] Eling, M. and R. Faust, 2010. The performance of hedge funds and mutual funds in

emerging markets. Journal of Banking and Finance 34(8), 1993-2009.

[19] Fishburn, P., 1977. Mean-Risk Analysis with Risk Associated with Below-Target Re-

turns. American Economic Review 67(2), 116-126.

[20] Fong, W.M., W.K. Wong and H.H. Lean, 2005. International momentum strategies: A

stochastic dominance approach. Journal of Financial Markets 8, 89-109.

[21] Frydenberg, S., S. Lindset and S. Westgaard, 2008. Hedge Fund Return Statistics,

1994-2005. Journal of Investing 17(1), 7-21.

[22] Fung, W. and D. Hsieh, 1997. Empirical Characteristics of Dynamic Trading Strategies:

The Case of Hedge Funds. Review of Financial Studies 10, 275-302.

27



[23] Fung, W. and D. Hsieh, 2001. The risk in hedge fund strategies: Theory and evidence

from trend followers. Review of Financial Studies 14, 313�341.

[24] Fung, W. and D. Hsieh, 2002. The risk in �xed-income hedge fund styles. Journal of

Fixed Income 12, 6�27.

[25] Fung, W. and D. Hsieh, 2004. Hedge fund benchmarks: A risk based approach. Finan-

cial Analysts Journal 60(5), 65�80.

[26] Fung, W. and D. Hsieh, 2011. The risk in hedge fund strategies: Theory and evidence

from long/short equity hedge funds. Forthcoming in Journal of Empirical Finance.

[27] Geweke, J. and G. Amisano, 2010. Comparing and evaluating Bayesian predictive

distributions of asset returns. International Journal of Forecasting 26, 216-230.

[28] Giannikis, D. and I. Vrontos, 2011. A Bayesian approach to detecting nonlinear risk

exposures in hedge fund strategies. Journal of Banking and Finance 35(6), 1399-1414.

[29] Gneiting, T. and R. Ranjan, 2011. Comparing density forecasts using threshold- and

quantile-weighted scoring rules. Journal of Business and Economic Statistics 29(3),

411-422.

[30] Gonzalo, J. and J. Olmo, 2011. Conditional Stochastic Dominance Tests in Dynamic

Settings. Mimeo.

[31] Hall, P., J. Racine and Q. Li, 2004. Cross-Validation and the Estimation of Conditional

Probability Densities. Journal of the American Statistical Association 99, 1015-1026.

[32] Hamza, O., M. Kooli and M. Roberge, 2006. Further Evidence on Hedge Fund Return

Predictability. The Journal of Wealth Management, 9(3), 68-79.

[33] Hansen, B., 1996. Inference when a nuisance parameter is not identi�ed under the null

hypothesis. Econometrica 64(2), 413-430.

28



[34] Harvey, C. R. and A. Siddique, 2000. Conditional Skewness in Asset Pricing Tests.

Journal of Finance 55(3), 1263-1295.

[35] Heidorn, T., D. Kaiser and A. Voinea, 2010. The Value-Added of Investable Hedge

Fund Indices. Journal of Health Management 13(3), 59-79.

[36] Keim, D. B. and R. F. Stambaugh, 1986. Predicting Returns in the Stock and Bond

Markets. Journal of Financial Economics 17(2), 357-390.

[37] Klecan, L., R. McFadden and R. McFadden, 1991. A Robust Test for Stochastic Dom-

inance. Mimeo.

[38] Levy, H., 2006. Stochastic Dominance: Investment Decision Making under Uncertainty.

Springer, New York.

[39] Li, Y. and H. Kazemi, 2007. Conditional Properties of Hedge Funds: Evidence from

Daily Returns. European Financial Management 13(2), 211�238.

[40] Li, S. and O. Linton, 2010. Evaluating Hedge Fund Performance: A Stochastic Domi-

nance Approach. In Handbook of Portfolio Construction: Contemporary Applications

of Markowitz Techniques (J. B. Guerard, ed.), 551-564.

[41] Li, Q. and J. S. Racine, 2007. Nonparametric Econometrics. Princeton University Press.

[42] Linton, O., E. Maasoumi and Y. J. Whang, 2005. Consistent testing for stochastic

dominance under general sampling schemes. Review of Economic Studies 72, 735-765.

[43] Linton, O., K. Song, and Y. J. Whang, (2010). An Improved Bootstrap Test of Sto-

chastic Dominance. Journal of Econometrics, 154, 2, 186-202.

[44] Meligkotsidou, L., I. Vrontos and S. Vrontos, 2009. Quantile regression analysis of

hedge fund strategies. Journal of Empirical Finance 16, 264-279.

[45] Patton, A., 2009. Are �Market Neutral�Hedge Funds Really Market Neutral? Review

of Financial Studies 22(7), 2495-2530.

29



[46] Politis, D., H. White and A. Patton, 2009. Correction: Automatic Block-Length Selec-

tion for the Dependent Bootstrap. Econometric Reviews 28, 373-375.

[47] Porter, R. B., 1974. Semivariance and Stochastic Dominance: A Comparison. American

Economic Review 64, 200-204.

[48] Romano, J. P., and M. Wolf, 2011. Alternative Tests for Monotonicity in Expected

Asset Returns. Working Paper Series 017. Department of Economics. University of

Zurich.

[49] Scaillet, O. and N. Topaglou, 2010. Testing for Stochastic Dominance E¢ ciency. Jour-

nal of Business and Economic Statistics 28(1), 169-180.

[50] Sriboonchitta, S., W-K. Wong, S. Dhompongsa and H. Nguyen, 2010. Stochastic Domi-

nance and Applications to Finance, Risk and Economics. Chapman & Hall/CRC, Boca

Raton.

[51] Stone, B. K., 1973. A General Class of Three-Parameter Risk Measures. Journal of

Finance 28, 675-685.

[52] Switzer, L. and A. Omelchak, 2009. Time-varying asset allocation across hedge fund

indices. Journal of Derivatives and Hedge Funds 15, 70-85.

[53] Ter Horst, J. and G. Salganik, 2011. Style Chasing by Hedge Fund Investors. Available

at SSRN: http://ssrn.com/abstract=1362576.

[54] Vrontos, I., 2012. Evidence for Hedge Fund Predictability from a Multivariate Student-t

Full-Factor GARCH Model. Forthcoming in Journal of Applied Statistics.

[55] Wegener, C., R. von Nitzsch and C. Cengiz, 2010. An advanced perspective on the

predictability in hedge fund returns. Journal of Banking and Finance 34(11), 2694-

2708.

[56] Wong, W-K., K. Phoon and H. Lean, 2008. Stochastic dominance analysis of Asian

hedge funds. Paci�c-Basin Finance Journal 16, 204-223.

30



Table 1. Descriptive statistics of excess returns. �Directional

Traders�hedge fund investment styles, 1994:01-2009:12.

ALL DSB EM GM MF

Mean 0.005 -0.004 0.005 0.007 0.003

Median 0.005 -0.008 0.011 0.008 0.0002

Maximum 0.081 0.223 0.160 0.101 0.095

Minimum -0.080 -0.096 -0.234 -0.119 -0.098

Std. Dev. 0.022 0.049 0.045 0.030 0.034

Skewness -0.268 0.737 -0.799 -0.101 0.033

Kurtosis 5.293 4.545 7.648 6.145 3.064

Jarque-Bera 44.384 36.459 193.241 79.457 0.069

p-value 0.000 0.000 0.000 0.000 0.966

AC(1) 0.202 0.093 0.320 0.084 0.069

p-value 0.005 0.194 0.000 0.240 0.333

AC(4) -0.037 -0.060 -0.032 -0.072 0.004

p-value 0.036 0.424 0.000 0.465 0.122

AC(12) -0.010 -0.134 -0.041 0.007 -0.057

p-value 0.132 0.437 0.002 0.031 0.022

Observations 192 192 192 192 192

Note: ALL: Hedge Fund industry, DSB: Dedicated Short Bias,

EM: Emerging Markets, GM: Global Macro, and MF: Managed

Futures. AC(p) is the autocorrelation coe¢ cient of order p.
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Table 2. Descriptive statistics of Fung-Hsieh hedge fund risk factors, 1994:01-2009:12.

BTF CTF CMTF EqMkt SizeSpr BMkt CrdSpr MSCIEM

Mean -0.017 -0.001 -0.006 0.003 0.0008 -0.003 -0.0005 0.003

Median -0.051 -0.045 -0.032 0.009 0.0003 -0.004 0.000 0.005

Maximum 0.684 0.898 0.644 0.100 0.184 0.275 0.216 0.166

Minimum -0.256 -0.304 -0.234 -0.168 -0.163 -0.269 -0.253 -0.297

Std. Dev. 0.147 0.198 0.139 0.045 0.036 0.066 0.053 0.072

Skewness 1.459 1.366 1.263 -0.712 0.282 0.469 -0.491 -0.776

Kurtosis 5.995 5.623 5.532 4.096 7.479 7.043 8.276 4.874

Jarque-Bera 139.846 114.796 102.347 25.821 163.069 137.833 230.410 47.378

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AC(1) 0.119 0.035 -0.038 0.112 -0.136 0.037 0.199 0.211

p-value 0.096 0.629 0.595 0.117 0.058 0.610 0.005 0.003

AC(4) -0.060 -0.084 0.005 0.066 -0.035 0.009 -0.001 -0.026

p-value 0.435 0.115 0.988 0.254 0.286 0.001 0.012 0.017

AC(12) -0.018 -0.074 0.027 0.053 0.039 0.008 0.079 -0.027

p-value 0.406 0.445 0.991 0.614 0.307 0.009 0.002 0.090

Observations 192 192 192 192 192 192 192 192

Note: BTF: Excess returns on portfolios of lookback straddle options on bonds, CTF: on currencies,

CMTF: on commodities, EqMkt: Excess monthly total return of the S&P500 index, SizeSpr: Russell 2000

index monthly total return minus the S&P500 monthly total return, BMkt: Monthly change in the 10-year

Treasury constant maturity yield, CrdSpr: Monthly change in Moody�s Baa yield minus the 10-year

Treasury constant maturity yield, MSCIEM: MSCI Emerging Market index monthly total excess return.
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